Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38179087

RESUMEN

Purpose: Having dedicated MRI scanners within radiation oncology departments may present unexpected challenges since radiation oncologists and radiation therapists are generally not trained in this modality and there are potential patient safety concerns. This study retrospectively reviews the incidental findings and safety events that were observed at a single institution during introduction of MRI sim for head and neck radiotherapy planning. Methods: Consecutive patients from March 1, 2020, to May 31, 2022, who were scheduled for MRI sim after having completed CT simulation for head and neck radiotherapy were included for analysis. Patients first underwent a CT simulation with a thermoplastic mask and in most cases with an intraoral stent. The same setup was then reproduced in the MRI simulator. Safety events were instances where scheduled MRI sims were not completed due to the MRI technologist identifying MRI-incompatible devices or objects at the time of sim. Incidental findings were identified during weekly quality assurance rounds as a joint enterprise of head and neck radiation oncology and neuroradiology. Categorical variables between completed and not completed MRI sims were compared using the Chi-Square test and continuous variables were compared using the Mann-Whitney U test with a p-value of < 0.05 considered to be statistically significant. Results: 148 of 169 MRI sims (88 %) were completed as scheduled and 21 (12 %) were not completed (Table 1). Among the 21 aborted MRI sims, the most common reason was due to safety events flagged by the MRI technologist (n = 8, 38 %) because of the presence of metal or a medical device that was not noted at the time of initial screening by the administrative coordinator. Patients who did not complete MRI sim were more likely to be treated for non-squamous head and neck primary tumor (p = 0.016) and were being treated post-operatively (p < 0.001). CT and MRI sim scans each had 17 incidental findings. CT simulation detected 3 cases of new metastases in lungs, which were outside the scan parameters of MRI sim. MRI sim detected one case of dural venous thrombosis and one case of cervical spine epidural abscess, which were not detected by CT simulation. Conclusions: Radiation oncology departments with dedicated MRI simulation scanners would benefit from diagnostic radiology review for incidental findings and having therapists with MRI safety credentialing to catch near-miss events.

2.
Med Phys ; 51(1): 31-41, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38055419

RESUMEN

BACKGROUND: Image-guided radiation-therapy (IGRT)-based robotic radiosurgery using magnetic resonance imaging (MRI)-only simulation could allow for improved target definition with highly conformal radiotherapy treatments. Fiducial marker (FM)-based alignment is used with robotic radiosurgery treatments of sites such as the prostate because it aids in accurate target localization. Synthetic CT (sCT) images are generated in the MRI-only workflow but FMs used for IGRT appear as signal voids in MRIs and do not appear in MR-generated sCTs, hindering the ability to use sCTs for fiducial-based IGRT. PURPOSE: In this study we evaluate the fiducial tracking accuracy for a novel artificial fiducial insertion method in sCT images that allows for fiducial marker tracking in robotic radiosurgery, using MRI-only simulation imaging (MRI-only workflow). METHODS: Artificial fiducial markers were inserted into sCT images at the site of the real marker implantation as visible in MRI. Two phantoms were used in this study. A custom anthropomorphic pelvis phantom was designed to validate the tracking accuracy for a variety of artificial fiducials in an MRI-only workflow. A head phantom containing a hidden target and orthogonal film pair inserts was used to perform end-to-end tests of artificial fiducial configurations inserted in sCT images. The setup and end-to-end targeting accuracy of the MRI-only workflow were compared to the computed tomography (CT)-based standard. Each phantom had six FMs implanted with a minimum spacing of 2 cm. For each phantom a bulk-density sCT was generated, and artificial FMs were inserted at the implantation location. Several methods of FM insertion were tested including: (1) replacing HU with a fixed value (10000HU) (voxel-burned); (2) using a representative fiducial image derived from a linear combination of fiducial templates (composite-fiducial); (3) computationally simulating FM signal voids using a digital phantom containing FMs and inserting the corresponding signal void into sCT images (simulated-fiducial). All tests were performed on a CyberKnife system (Accuray, Sunnyvale, CA). Treatment plans and digital-reconstructed-radiographs were generated from the original CT and sCTs with embedded fiducials and used to align the phantom on the treatment couch. Differences in the initial phantom alignment (3D translations/rotations) and tracking parameters between CT-based plans and sCT-based plans were analyzed. End-to-end plans for both scenarios were generated and analyzed following our clinical protocol. RESULTS: For all plans, the fiducial tracking algorithm was able to identify the fiducial locations. The mean FM-extraction uncertainty for the composite and simulated FMs was below 48% for fiducials in both the anthropomorphic pelvis and end-to-end phantoms, which is below the 70% treatment uncertainty threshold. The total targeting error was within tolerance (<0.95 mm) for end-to-end tests of sCT images with the composite and head-on simulated FMs (0.26, 0.44, and 0.35 mm for the composite fiducial in sCT, head-on simulated fiducial in sCT, and fiducials in original CT, respectively. CONCLUSIONS: MRI-only simulation for robotic radiosurgery could potentially improve treatment accuracy and reduce planning margins. Our study has shown that using a composite-derived or simulated FM in conjunction with sCT images, MRI-only workflow can provide clinically acceptable setup accuracy in line with CT-based standards for FM-based robotic radiosurgery.


Asunto(s)
Radiocirugia , Radioterapia Guiada por Imagen , Procedimientos Quirúrgicos Robotizados , Masculino , Humanos , Imagen por Resonancia Magnética/métodos , Radioterapia Guiada por Imagen/métodos , Marcadores Fiduciales , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador/métodos
3.
Int J Radiat Oncol Biol Phys ; 119(1): 66-77, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000701

RESUMEN

PURPOSE: This study aimed to predict the probability of grade ≥2 pneumonitis or dyspnea within 12 months of receiving conventionally fractionated or mildly hypofractionated proton beam therapy for locally advanced lung cancer using machine learning. METHODS AND MATERIALS: Demographic and treatment characteristics were analyzed for 965 consecutive patients treated for lung cancer with conventionally fractionated or mildly hypofractionated (2.2-3 Gy/fraction) proton beam therapy across 12 institutions. Three machine learning models (gradient boosting, additive tree, and logistic regression with lasso regularization) were implemented to predict Common Terminology Criteria for Adverse Events version 4 grade ≥2 pulmonary toxicities using double 10-fold cross-validation for parameter hyper-tuning without leak of information. Balanced accuracy and area under the curve were calculated, and 95% confidence intervals were obtained using bootstrap sampling. RESULTS: The median age of the patients was 70 years (range, 20-97), and they had predominantly stage IIIA or IIIB disease. They received a median dose of 60 Gy in 2 Gy/fraction, and 46.4% received concurrent chemotherapy. In total, 250 (25.9%) had grade ≥2 pulmonary toxicity. The probability of pulmonary toxicity was 0.08 for patients treated with pencil beam scanning and 0.34 for those treated with other techniques (P = 8.97e-13). Use of abdominal compression and breath hold were highly significant predictors of less toxicity (P = 2.88e-08). Higher total radiation delivered dose (P = .0182) and higher average dose to the ipsilateral lung (P = .0035) increased the likelihood of pulmonary toxicities. The gradient boosting model performed the best of the models tested, and when demographic and dosimetric features were combined, the area under the curve and balanced accuracy were 0.75 ± 0.02 and 0.67 ± 0.02, respectively. After analyzing performance versus the number of data points used for training, we observed that accuracy was limited by the number of observations. CONCLUSIONS: In the largest analysis of prospectively enrolled patients with lung cancer assessing pulmonary toxicities from proton therapy to date, advanced machine learning methods revealed that pencil beam scanning, abdominal compression, and lower normal lung doses can lead to significantly lower probability of developing grade ≥2 pneumonitis or dyspnea.


Asunto(s)
Neoplasias Pulmonares , Neumonía , Terapia de Protones , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Neoplasias Pulmonares/tratamiento farmacológico , Terapia de Protones/efectos adversos , Protones , Estudios Prospectivos , Neumonía/etiología , Disnea/etiología , Dosificación Radioterapéutica
4.
J Appl Clin Med Phys ; 25(1): e14239, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128040

RESUMEN

BACKGROUND: Magnetic resonance image only (MRI-only) simulation for head and neck (H&N) radiotherapy (RT) could allow for single-image modality planning with excellent soft tissue contrast. In the MRI-only simulation workflow, synthetic computed tomography (sCT) is generated from MRI to provide electron density information for dose calculation. Bone/air regions produce little MRI signal which could lead to electron density misclassification in sCT. Establishing the dosimetric impact of this error could inform quality assurance (QA) procedures using MRI-only RT planning or compensatory methods for accurate dosimetric calculation. PURPOSE: The aim of this study was to investigate if Hounsfield unit (HU) voxel misassignments from sCT images result in dosimetric errors in clinical treatment plans. METHODS: Fourteen H&N cancer patients undergoing same-day CT and 3T MRI simulation were retrospectively identified. MRI was deformed to the CT using multimodal deformable image registration. sCTs were generated from T1w DIXON MRIs using a commercially available deep learning-based generator (MRIplanner, Spectronic Medical AB, Helsingborg, Sweden). Tissue voxel assignment was quantified by creating a CT-derived HU threshold contour. CT/sCT HU differences for anatomical/target contours and tissue classification regions including air (<250 HU), adipose tissue (-250 HU to -51 HU), soft tissue (-50 HU to 199 HU), spongy (200 HU to 499 HU) and cortical bone (>500 HU) were quantified. t-test was used to determine if sCT/CT HU differences were significant. The frequency of structures that had a HU difference > 80 HU (the CT window-width setting for intra-cranial structures) was computed to establish structure classification accuracy. Clinical intensity modulated radiation therapy (IMRT) treatment plans created on CT were retrospectively recalculated on sCT images and compared using the gamma metric. RESULTS: The mean ratio of sCT HUs relative to CT for air, adipose tissue, soft tissue, spongy and cortical bone were 1.7 ± 0.3, 1.1 ± 0.1, 1.0 ± 0.1, 0.9 ± 0.1 and 0.8 ± 0.1 (value of 1 indicates perfect agreement). T-tests (significance set at t = 0.05) identified differences in HU values for air, spongy and cortical bone in sCT images compared to CT. The structures with sCT/CT HU differences > 80 HU of note were the left and right (L/R) cochlea and mandible (>79% of the tested cohort), the oral cavity (for 57% of the tested cohort), the epiglottis (for 43% of the tested cohort) and the L/R TM joints (occurring > 29% of the cohort). In the case of the cochlea and TM joints, these structures contain dense bone/air interfaces. In the case of the oral cavity and mandible, these structures suffer the additional challenge of being positionally altered in CT versus MRI simulation (due to a non-MR safe immobilizing bite block requiring absence of bite block in MR). Finally, the epiglottis HU assignment suffers from its small size and unstable positionality. Plans recalculated on sCT yielded global/local gamma pass rates of 95.5% ± 2% (3 mm, 3%) and 92.7% ± 2.1% (2 mm, 2%). The largest mean differences in D95, Dmean , D50 dose volume histogram (DVH) metrics for organ-at-risk (OAR) and planning tumor volumes (PTVs) were 2.3% ± 3.0% and 0.7% ± 1.9% respectively. CONCLUSIONS: In this cohort, HU differences of CT and sCT were observed but did not translate into a reduction in gamma pass rates or differences in average PTV/OAR dose metrics greater than 3%. For sites such as the H&N where there are many tissue interfaces we did not observe large scale dose deviations but further studies using larger retrospective cohorts are merited to establish the variation in sCT dosimetric accuracy which could help to inform QA limits on clinical sCT usage.


Asunto(s)
Aprendizaje Profundo , Humanos , Estudios Retrospectivos , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Dosificación Radioterapéutica , Imagen por Resonancia Magnética/métodos
5.
Br J Radiol ; 96(1152): 20220907, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37660372

RESUMEN

OBJECTIVE: Mapping CT number to material property dominates the proton range uncertainty. This work aims to develop a physics-constrained deep learning-based multimodal imaging (PDMI) framework to integrate physics, deep learning, MRI, and advanced dual-energy CT (DECT) to derive accurate patient mass density maps. METHODS: Seven tissue substitute MRI phantoms were used for validation including adipose, brain, muscle, liver, skin, spongiosa, 45% hydroxyapatite (HA) bone. MRI images were acquired using T1 weighted Dixon and T2 weighted short tau inversion recovery sequences. Training inputs are from MRI and twin-beam dual-energy images acquired at 120 kVp with gold/tin filters. The feasibility investigation included an empirical model and four residual networks (ResNet) derived from different training inputs and strategies by PDMI framework. PRN-MR-DE and RN-MR-DE denote ResNet (RN) trained with and without a physics constraint (P) using MRI (MR) and DECT (DE) images. PRN-DE stands for RN trained with a physics constraint using only DE images. A retrospective study using institutional patient data was also conducted to investigate the feasibility of the proposed framework. RESULTS: For the tissue surrogate study, PRN-MR-DE, PRN-DE, and RN-MR-DE result in mean mass density errors: -0.72%/2.62%/-3.58% for adipose; -0.03%/-0.61%/-0.18% for muscle; -0.58%/-1.36%/-4.86% for 45% HA bone. The retrospective patient study indicated that PRN-MR-DE predicted the densities of soft tissue and bone within expected intervals based on the literature survey, while PRN-DE generated large density deviations. CONCLUSION: The proposed PDMI framework can generate accurate mass density maps using MRI and DECT images. The supervised learning can further enhance model efficacy, making PRN-MR-DE outperform RN-MR-DE. The patient investigation also shows that the framework can potentially improve proton range uncertainty with accurate patient mass density maps. ADVANCES IN KNOWLEDGE: PDMI framework is proposed for the first time to inform deep learning models by physics insights and leverage the information from MRI to derive accurate mass density maps.


Asunto(s)
Aprendizaje Profundo , Terapia de Protones , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Estudios Retrospectivos , Protones , Tomografía Computarizada por Rayos X/métodos , Imagen Multimodal/métodos , Imagen por Resonancia Magnética/métodos , Obesidad
6.
Cancers (Basel) ; 15(14)2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37509207

RESUMEN

PURPOSES: To provide abdominal contrast-enhanced MR image synthesis, we developed an gradient regularized multi-modal multi-discrimination sparse attention fusion generative adversarial network (GRMM-GAN) to avoid repeated contrast injections to patients and facilitate adaptive monitoring. METHODS: With IRB approval, 165 abdominal MR studies from 61 liver cancer patients were retrospectively solicited from our institutional database. Each study included T2, T1 pre-contrast (T1pre), and T1 contrast-enhanced (T1ce) images. The GRMM-GAN synthesis pipeline consists of a sparse attention fusion network, an image gradient regularizer (GR), and a generative adversarial network with multi-discrimination. The studies were randomly divided into 115 for training, 20 for validation, and 30 for testing. The two pre-contrast MR modalities, T2 and T1pre images, were adopted as inputs in the training phase. The T1ce image at the portal venous phase was used as an output. The synthesized T1ce images were compared with the ground truth T1ce images. The evaluation metrics include peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and mean squared error (MSE). A Turing test and experts' contours evaluated the image synthesis quality. RESULTS: The proposed GRMM-GAN model achieved a PSNR of 28.56, an SSIM of 0.869, and an MSE of 83.27. The proposed model showed statistically significant improvements in all metrics tested with p-values < 0.05 over the state-of-the-art model comparisons. The average Turing test score was 52.33%, which is close to random guessing, supporting the model's effectiveness for clinical application. In the tumor-specific region analysis, the average tumor contrast-to-noise ratio (CNR) of the synthesized MR images was not statistically significant from the real MR images. The average DICE from real vs. synthetic images was 0.90 compared to the inter-operator DICE of 0.91. CONCLUSION: We demonstrated the function of a novel multi-modal MR image synthesis neural network GRMM-GAN for T1ce MR synthesis based on pre-contrast T1 and T2 MR images. GRMM-GAN shows promise for avoiding repeated contrast injections during radiation therapy treatment.

7.
Phys Med Biol ; 68(17)2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37463589

RESUMEN

Objective. Range uncertainty in proton therapy is an important factor limiting clinical effectiveness. Magnetic resonance imaging (MRI) can measure voxel-wise molecular composition and, when combined with kilovoltage CT (kVCT), accurately determine mean ionization potential (Im), electron density, and stopping power ratio (SPR). We aimed to develop a novel MR-based multimodal method to accurately determine SPR and molecular compositions. This method was evaluated in tissue-mimicking andex vivoporcine phantoms, and in a brain radiotherapy patient.Approach. Four tissue-mimicking phantoms with known compositions, two porcine tissue phantoms, and a brain cancer patient were imaged with kVCT and MRI. Three imaging-based values were determined: SPRCM(CT-based Multimodal), SPRMM(MR-based Multimodal), and SPRstoich(stoichiometric calibration). MRI was used to determine two tissue-specific quantities of the Bethe Bloch equation (Im, electron density) to compute SPRCMand SPRMM. Imaging-based SPRs were compared to measurements for phantoms in a proton beam using a multilayer ionization chamber (SPRMLIC).Main results. Root mean square errors relative to SPRMLICwere 0.0104(0.86%), 0.0046(0.45%), and 0.0142(1.31%) for SPRCM, SPRMM, and SPRstoich, respectively. The largest errors were in bony phantoms, while soft tissue and porcine tissue phantoms had <1% errors across all SPR values. Relative to known physical molecular compositions, imaging-determined compositions differed by approximately ≤10%. In the brain case, the largest differences between SPRstoichand SPRMMwere in bone and high lipids/fat tissue. The magnitudes and trends of these differences matched phantom results.Significance. Our MR-based multimodal method determined molecular compositions and SPR in various tissue-mimicking phantoms with high accuracy, as confirmed with proton beam measurements. This method also revealed significant SPR differences compared to stoichiometric kVCT-only calculation in a clinical case, with the largest differences in bone. These findings support that including MRI in proton therapy treatment planning can improve the accuracy of calculated SPR values and reduce range uncertainties.


Asunto(s)
Neoplasias Encefálicas , Terapia de Protones , Animales , Porcinos , Protones , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Imagen por Resonancia Magnética , Calibración , Planificación de la Radioterapia Asistida por Computador/métodos
9.
Semin Radiat Oncol ; 32(4): 421-431, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36202444

RESUMEN

Recent advancements in artificial intelligence (AI) in the domain of radiation therapy (RT) and their integration into modern software-based systems raise new challenges to the profession of medical physics experts. These AI algorithms are typically data-driven, may be continuously evolving, and their behavior has a degree of (acceptable) uncertainty due to inherent noise in training data and the substantial number of parameters that are used in the algorithms. These characteristics request adaptive, and new comprehensive quality assurance (QA) approaches to guarantee the individual patient treatment quality during AI algorithm development and subsequent deployment in a clinical RT environment. However, the QA for AI-based systems is an emerging area, which has not been intensively explored and requires interactive collaborations between medical doctors, medical physics experts, and commercial/research AI institutions. This article summarizes the current QA methodologies for AI modules of every subdomain in RT with further focus on persistent shortcomings and upcoming key challenges and perspectives.


Asunto(s)
Algoritmos , Inteligencia Artificial , Humanos
10.
Med Phys ; 49(10): 6622-6634, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35870154

RESUMEN

BACKGROUND: Megavoltage computed tomography (MVCT) has been implemented on many radiotherapy treatment machines for on-board anatomical visualization, localization, and adaptive dose calculation. Implementing an MR-only workflow by synthesizing MVCT from magnetic resonance imaging (MRI) would offer numerous advantages for treatment planning and online adaptation. PURPOSE: In this work, we sought to synthesize MVCT (sMVCT) datasets from MRI using deep learning to demonstrate the feasibility of MRI-MVCT only treatment planning. METHODS: MVCTs and T1-weighted MRIs for 120 patients treated for head-and-neck cancer were retrospectively acquired and co-registered. A deep neural network based on a fully-convolutional 3D U-Net architecture was implemented to map MRI intensity to MVCT HU. Input to the model were volumetric patches generated from paired MRI and MVCT datasets. The U-Net was initialized with random parameters and trained on a mean absolute error (MAE) objective function. Model accuracy was evaluated on 18 withheld test exams. sMVCTs were compared to respective MVCTs. Intensity-modulated volumetric radiotherapy (IMRT) plans were generated on MVCTs of four different disease sites and compared to plans calculated onto corresponding sMVCTs using the gamma metric and dose-volume-histograms (DVHs). RESULTS: MAE values between sMVCT and MVCT datasets were 93.3 ± 27.5, 78.2 ± 27.5, and 138.0 ± 43.4 HU for whole body, soft tissue, and bone volumes, respectively. Overall, there was good agreement between sMVCT and MVCT, with bone and air posing the greatest challenges. The retrospective dataset introduced additional deviations due to sinus filling or tumor growth/shrinkage between scans, differences in external contours due to variability in patient positioning, or when immobilization devices were absent from diagnostic MRIs. Dose distributions of IMRT plans evaluated for four test cases showed close agreement between sMVCT and MVCT images when evaluated using DVHs and gamma dose metrics, which averaged to 98.9 ± 1.0% and 96.8 ± 2.6% analyzed at 3%/3 mm and 2%/2 mm, respectively. CONCLUSIONS: MVCT datasets can be generated from T1-weighted MRI using a 3D deep convolutional neural network with dose calculation on a sample sMVCT in close agreement with the MVCT. These results demonstrate the feasibility of using MRI-derived sMVCT in an MR-only treatment planning workflow.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada por Rayos X , Humanos , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
11.
Radiother Oncol ; 173: 69-76, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35667575

RESUMEN

BACKGROUND: Liver tumors are often invisible on four-dimensional commuted tomography (4D-CT). Imperfect imaging surrogates are used to estimate the tumor motion. Here, we assessed multiple 4D magnetic resonance (MR) binning algorithms for directly visualizing liver tumor motion for radiotherapy planning. METHODS: Patients were simulated using a 3 Tesla MR and CT scanner. Three prototype binning algorithms (phase, amplitude, and two-directional) were applied to the 4D-MRIs, and the image quality was assessed using a qualitative clarity score and quantitative sharpness score. Radiation plans were generated for internal target volumes (ITVs) derived using 4D-MRI and 4D-CT, and the dosimetry of targets were compared. Paired t-tests were used to compare sharpness scores and dosimetric data. RESULTS: Twelve patients with 17 liver tumors were scanned between May and November 2021. Compared to phase binning, two-directional demonstrated equal or better clarity and sharpness scores (end-expiration: 0.33 vs 0.38, p = 0.018, end-inspiration: 0.28 vs 0.31, p = 0.010). Compared to amplitude binning, two-directional binning captured hysteresis of ≥ 3 mm in 35 % of patients. Evaluation of dosimetry CT-optimized plans revealed that PTV coverage of MR-derived targets were significantly lower than CT-derived targets (PTV receiving 90 % of prescription: 75.56 % vs 89.38 %, p = 0.002). CONCLUSION: Using contrast-enhanced 4D-MRI is feasible for directly delineating liver tumors throughout the respiratory cycle. The current standard of using radiation plans optimized for 4D-CT-derived targets achieved lower coverage of directly visualized MRI targets, suggesting that adopting MRI for motion management may improve radiation treatment of liver lesions and reduce the risk of marginal misses.


Asunto(s)
Neoplasias Hepáticas , Neoplasias Pulmonares , Tomografía Computarizada Cuatridimensional/métodos , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/radioterapia , Neoplasias Pulmonares/radioterapia , Imagen por Resonancia Magnética/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Respiración
12.
Phys Med Biol ; 67(10)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35417903

RESUMEN

Objective. Kilovoltage computed tomography (kVCT) is the cornerstone of radiotherapy treatment planning for delineating tissues and towards dose calculation. For the former, kVCT provides excellent contrast and signal-to-noise ratio. For the latter, kVCT may have greater uncertainty in determining relative electron density (ρe) and proton stopping power ratio (SPR). Conversely, megavoltage CT (MVCT) may result in superior dose calculation accuracy. The purpose of this work was to convert kVCT HU to MVCT HU using deep learning to obtain higher accuracyρeand SPR.Approach. Tissue-mimicking phantoms were created to compare kVCT- and MVCT-determinedρeand SPR to physical measurements. Using 100 head-and-neck datasets, an unpaired deep learning model was trained to learn the relationship between kVCTs and MVCTs, creating synthetic MVCTs (sMVCTs). Similarity metrics were calculated between kVCTs, sMVCTs, and MVCTs in 20 test datasets. An anthropomorphic head phantom containing bone-mimicking material with known composition was scanned to provide an independent determination ofρeand SPR accuracy by sMVCT.Main results. In tissue-mimicking bone,ρeerrors were 2.20% versus 0.19% and SPR errors were 4.38% versus 0.22%, for kVCT versus MVCT, respectively. Compared to MVCT,in vivomean difference (MD) values were 11 and 327 HU for kVCT and 2 and 3 HU for sMVCT in soft tissue and bone, respectively.ρeMD decreased from 1.3% to 0.35% in soft tissue and 2.9% to 0.13% in bone, for kVCT and sMVCT, respectively. SPR MD decreased from 1.8% to 0.24% in soft tissue and 6.8% to 0.16% in bone, for kVCT and sMVCT, respectively. Relative to physical measurements,ρeand SPR error in anthropomorphic bone decreased from 7.50% and 7.48% for kVCT to <1% for both MVCT and sMVCT.Significance. Deep learning can be used to map kVCT to sMVCT, suggesting higher accuracyρeand SPR is achievable with sMVCT versus kVCT.


Asunto(s)
Terapia de Protones , Protones , Electrones , Aprendizaje Automático , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador
13.
Med Phys ; 48(1): 342-353, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33107997

RESUMEN

PURPOSE: Proton therapy is becoming an increasingly popular cancer treatment modality due to the proton's physical advantage in that it deposits the majority of its energy at the distal end of its track where the tumor is located. The proton range in a material is determined from the stopping power ratio (SPR) of the material. However, SPR is typically estimated based on a computed tomography (CT) scan which can lead to range estimation errors due to the difference in x-ray and proton interactions in matter, which can preclude the ability to utilize protons to their full potential. Applications of magnetic resonance imaging (MRI) in radiotherapy have increased over the past decade and using MRI to calculate SPR directly could provide numerous advantages. The purpose of this study was to develop a practical implementation of a novel multimodal imaging method for estimating SPR and compare the results of this method to physical measurements in which values were computed directly using tissue substitute materials fabricated to mimic skin, muscle, adipose, and spongiosa bone. METHODS: For both the multimodal imaging method and physical measurements, SPR was calculated using the Bethe-Bloch equation from values of relative electron density and mean ionization potential determined for each tissue. Parameters used to estimate SPR using the multimodal imaging method were extracted from Dixon water-only and (1 H) proton density-weighted zero echo time MRI sequences and CT, with both kVCT and MVCT used separately to evaluate the performance of each. For comparison, SPR was also computed from kVCT using the stoichiometric method, the current clinical standard. RESULTS: Results showed that our multimodal imaging approach using MRI with either kVCT or MVCT was in close agreement to SPR calculated from physical measurements for the four tissue substitutes evaluated. Using MRI and MVCT, SPR values estimated using our method were within 1% of physical measurements and were more accurate than the stoichiometric method for the tissue types studied. CONCLUSIONS: We have demonstrated the methodology for improved estimation of SPR using the proposed multimodal imaging framework.


Asunto(s)
Terapia de Protones , Tomografía Computarizada por Rayos X , Electrones , Imagen por Resonancia Magnética , Fantasmas de Imagen , Protones , Planificación de la Radioterapia Asistida por Computador
14.
Med Phys ; 48(2): 676-690, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33232526

RESUMEN

PURPOSE: Megavoltage computed tomography (MVCT) has been implemented on many radiation therapy treatment machines as a tomographic imaging modality that allows for three-dimensional visualization and localization of patient anatomy. Yet MVCT images exhibit lower contrast and greater noise than its kilovoltage CT (kVCT) counterpart. In this work, we sought to improve these disadvantages of MVCT images through an image-to-image-based machine learning transformation of MVCT and kVCT images. We demonstrated that by learning the style of kVCT images, MVCT images can be converted into high-quality synthetic kVCT (skVCT) images with higher contrast and lower noise, when compared to the original MVCT. METHODS: Kilovoltage CT and MVCT images of 120 head and neck (H&N) cancer patients treated on an Accuray TomoHD system were retrospectively analyzed in this study. A cycle-consistent generative adversarial network (CycleGAN) machine learning, a variant of the generative adversarial network (GAN), was used to learn Hounsfield Unit (HU) transformations from MVCT to kVCT images, creating skVCT images. A formal mathematical proof is given describing the interplay between function sensitivity and input noise and how it applies to the error variance of a high-capacity function trained with noisy input data. Finally, we show how skVCT shares distributional similarity to kVCT for various macro-structures found in the body. RESULTS: Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were improved in skVCT images relative to the original MVCT images and were consistent with kVCT images. Specifically, skVCT CNR for muscle-fat, bone-fat, and bone-muscle improved to 14.8 ± 0.4, 122.7 ± 22.6, and 107.9 ± 22.4 compared with 1.6 ± 0.3, 7.6 ± 1.9, and 6.0 ± 1.7, respectively, in the original MVCT images and was more consistent with kVCT CNR values of 15.2 ± 0.8, 124.9 ± 27.0, and 109.7 ± 26.5, respectively. Noise was significantly reduced in skVCT images with SNR values improving by roughly an order of magnitude and consistent with kVCT SNR values. Axial slice mean (S-ME) and mean absolute error (S-MAE) agreement between kVCT and MVCT/skVCT improved, on average, from -16.0 and 109.1 HU to 8.4 and 76.9 HU, respectively. CONCLUSIONS: A kVCT-like qualitative aid was generated from input MVCT data through a CycleGAN instance. This qualitative aid, skVCT, was robust toward embedded metallic material, dramatically improves HU alignment from MVCT, and appears perceptually similar to kVCT with SNR and CNR values equivalent to that of kVCT images.


Asunto(s)
Neoplasias de Cabeza y Cuello , Planificación de la Radioterapia Asistida por Computador , Humanos , Aprendizaje Automático , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
15.
IEEE J Solid-State Circuits ; 55(11): 2947-2958, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33281206

RESUMEN

This paper presents a millimeter-scale CMOS 64×64 single charged particle radiation detector system for external beam cancer radiotherapy. A 1×1 µm2 diode measures energy deposition by a single charged particle in the depletion region, and the array design provides a large detection area of 512×512 µm2. Instead of sensing the voltage drop caused by radiation, the proposed system measures the pulse width, i.e., the time it takes for the voltage to return to its baseline. This obviates the need for using power-hungry and large analog-to-digital converters. A prototype ASIC is fabricated in TSMC 65 nm LP CMOS process and consumes the average static power of 0.535 mW under 1.2 V analog and digital power supply. The functionality of the whole system is successfully verified in a clinical 67.5 MeV proton beam setting. To our' knowledge, this is the first work to demonstrate single charged particle detection for implantable in-vivo dosimetry.

16.
Am J Ophthalmol Case Rep ; 19: 100787, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32760850

RESUMEN

PURPOSE: To describe the first series of six young uveal melanoma (UM) patients with oral isotretinoin and/or topical retinoid therapy prior to diagnosis. OBSERVATIONS: The case series is based on clinical observations at our UM quaternary referral center. Six UM patient cases are reported, ages 16-44 years old. All had been using either oral (isotretinoin) and/or topical (tretinoin or tazarotene) retinoid treatment (3 months-~10 years) prior to or at the time of diagnosis (3 of 6 cases). All patients had ocular complaints on presentation, and the onset of certain symptoms corresponded with the course of retinoids. Other potential risk factors or relevant history included Caucasian background, cone-rod dystrophy and active smoker status (Case 2), family history of UM and pregnancy at time of diagnosis (Case 3), past smoking and possible secondary Chernobyl exposure as a baby (Case 5). All patients were treated with proton beam radiotherapy and currently have no sign of recurrent or metastatic disease. CONCLUSIONS AND IMPORTANCE: Retinoid therapy has been linked to various benign and/or reversible effects on the anterior and posterior eye, though pathophysiology remains not well understood. Uveal melanoma (UM) is a rare cancer diagnosis in young adults. We report here the first case series of young UM patients with a history of retinoid use and ocular complaints. No causal link is claimed and further systematic epidemiologic and biologic study of retinoid therapy and ocular impact may provide additional relevant data, particularly in young ocular melanoma patients.

17.
Adv Radiat Oncol ; 5(4): 682-686, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32337386

RESUMEN

Uveal melanoma (UM) is a rare but life-threatening cancer of the eye. In light of the coronavirus disease (COVID-19) pandemic, hospitals and proton eye therapy facilities must analyze several factors to ensure appropriate treatment protocols for patients and provider teams. Practice considerations to limit COVID-19 transmission in the proton ocular treatment setting for UM are necessary. The Particle Therapy Co-Operative Group is the largest international community of particle/proton therapy providers. Participating experts have current or former affiliation with the member institutions of the Particle Therapy Co-Operative Group Ocular subcommittee with long-standing high-volume proton ocular programs. The practices reviewed in this document must be taken in conjunction with local hospital procedures, multidisciplinary recommendations, and regional/national guidelines, as each community may have its unique needs, supplies, and protocols. Importantly, as the pandemic evolves, so will the strategies and recommendations. Given the unique circumstances for UM patients, along with indications of potential ophthalmologic transmission as a result of health care providers working in close proximity to patients and intrinsic infectious risk from eyelashes, tears, and hair, practice strategies may be adapted to reduce the risk of viral transmission. Certainly, providers and health care systems will continue to examine and provide as safe and effective care as possible for patients in the current environment.

18.
Int J Radiat Oncol Biol Phys ; 95(1): 181-189, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26372435

RESUMEN

PURPOSE: To report the acute toxicities associated with pencil beam scanning proton beam radiation therapy (PBS) for whole pelvis radiation therapy in women with gynecologic cancers and the results of a dosimetric comparison of PBS versus intensity modulated radiation therapy (IMRT) plans. METHODS AND MATERIALS: Eleven patients with posthysterectomy gynecologic cancer received PBS to the whole pelvis. The patients received a dose of 45 to 50.4 Gy relative biological effectiveness (RBE) in 1.8 Gy (RBE) daily fractions. Acute toxicity was scored according to the Common Terminology Criteria for Adverse Events, version 4. A dosimetric comparison between a 2-field posterior oblique beam PBS and an IMRT plan was conducted. The Wilcoxon signed rank test was used to assess the potential dosimetric differences between the 2 plans and PBS target coverage robustness relative to setup uncertainties. RESULTS: The median patient age was 55 years (range 23-76). The primary site was cervical in 7, vaginal in 1, and endometrial in 3. Of the 11 patients, 7 received concurrent cisplatin, 1 each received sandwich carboplatin and paclitaxel chemotherapy, both sandwich and concurrent chemotherapy, and concurrent and adjuvant chemotherapy, and 1 received no chemotherapy. All patients completed treatment. Of the 9 patients who received concurrent chemotherapy, the rate of grade 2 and 3 hematologic toxicities was 33% and 11%, respectively. One patient (9%) developed grade 3 acute gastrointestinal toxicity; no patient developed grade ≥3 genitourinary toxicity. The volume of pelvic bone marrow, bladder, and small bowel receiving 10 to 30 Gy was significantly lower with PBS than with intensity modulated radiation therapy (P<.001). The target coverage for all PBS plans was robust relative to the setup uncertainties (P>.05) with the clinical target volume mean dose percentage received by 95% and 98% of the target volume coverage changes within 2% for the individual plans. CONCLUSIONS: Our results have demonstrated the clinical feasibility of PBS and the dosimetric advantages, especially for the low-dose sparing of normal tissues in the pelvis with the target robustness maintained relative to the setup uncertainties. Future studies with larger patient numbers are planned to further validate our preliminary findings.


Asunto(s)
Neoplasias Endometriales/radioterapia , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Neoplasias del Cuello Uterino/radioterapia , Neoplasias Vaginales/radioterapia , Adulto , Anciano , Antineoplásicos/uso terapéutico , Neoplasias Endometriales/diagnóstico por imagen , Neoplasias Endometriales/cirugía , Estudios de Factibilidad , Femenino , Humanos , Histerectomía , Intestino Delgado/efectos de la radiación , Irradiación Linfática/métodos , Persona de Mediana Edad , Tratamientos Conservadores del Órgano/efectos adversos , Tratamientos Conservadores del Órgano/métodos , Órganos en Riesgo/efectos de la radiación , Huesos Pélvicos/efectos de la radiación , Pelvis , Periodo Posoperatorio , Estudios Prospectivos , Terapia de Protones/efectos adversos , Radiografía , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/efectos adversos , Radioterapia de Intensidad Modulada/efectos adversos , Reirradiación/estadística & datos numéricos , Efectividad Biológica Relativa , Vejiga Urinaria/efectos de la radiación , Neoplasias del Cuello Uterino/cirugía , Neoplasias Vaginales/diagnóstico por imagen , Neoplasias Vaginales/cirugía
19.
Elife ; 3: e02217, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24714498

RESUMEN

Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor dimers at opposite ends of a central rod. Kinesin-5 motors crosslink adjacent microtubules to drive or constrain their sliding apart, but the structural basis of their organization is unknown. In this study, we report the atomic structure of the bipolar assembly (BASS) domain that directs four Kinesin-5 subunits to form a bipolar minifilament. BASS is a novel 26-nm four-helix bundle, consisting of two anti-parallel coiled-coils at its center, stabilized by alternating hydrophobic and ionic four-helical interfaces, which based on mutagenesis experiments, are critical for tetramerization. Strikingly, N-terminal BASS helices bend as they emerge from the central bundle, swapping partner helices, to form dimeric parallel coiled-coils at both ends, which are offset by 90°. We propose that BASS is a mechanically stable, plectonemically-coiled junction, transmitting forces between Kinesin-5 motor dimers during microtubule sliding. DOI: http://dx.doi.org/10.7554/eLife.02217.001.


Asunto(s)
Biopolímeros/química , Cinesinas/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Drosophila , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...